For each lecture, several containers are available :
Light image : for job scheduler (HT Condor, Slurm, etc)
Code server : for local and remote lectures with integrated VSCode in the browser (no VSCode installation needed)
Jupyter-hub : when Jupyter-hub is available through Kubernetes, Docker Swarm or other solutions. Both Jupyter notebook and Code Server are provided in these containers
Light image 135 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/compiler_optimisation/compiler_optimisation_alpine_light:latest
Code server 317 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/compiler_optimisation/compiler_optimisation_alpine_micromamba_code_server:latest
Jupyter-hub 466 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/compiler_optimisation/compiler_optimisation_alpine_micromamba_vscode:latest
Light image 128 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/introduction_cpp_algorithms/introduction_cpp_algorithms_alpine_light:latest
Code server 310 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/introduction_cpp_algorithms/introduction_cpp_algorithms_alpine_micromamba_code_server:latest
Jupyter-hub 383 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/introduction_cpp_algorithms/introduction_cpp_algorithms_alpine_micromamba_vscode:latest
Light image 143 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/performance_with_stencil/performance_with_stencil_alpine_light:latest
Code server 325 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/performance_with_stencil/performance_with_stencil_alpine_micromamba_code_server:latest
Jupyter-hub OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/performance_with_stencil/performance_with_stencil_alpine_micromamba_vscode:latest
Light image 180 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/introduction_valgrind/introduction_valgrind_alpine_light:latest
Code server 362 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/introduction_valgrind/introduction_valgrind_alpine_micromamba_code_server:latest
Jupyter-hub OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/introduction_valgrind/introduction_valgrind_alpine_micromamba_vscode:latest
Light image 148 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/performance_with_nan/performance_with_nan_alpine_light:latest
Code server 329 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/performance_with_nan/performance_with_nan_alpine_micromamba_code_server:latest
Jupyter-hub OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/performance_with_nan/performance_with_nan_alpine_micromamba_vscode:latest
Light image 127 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/development_and_optimisation/development_and_optimisation_alpine_light:latest
Code server 309 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/development_and_optimisation/development_and_optimisation_alpine_micromamba_code_server:latest
Jupyter-hub OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/development_and_optimisation/development_and_optimisation_alpine_micromamba_vscode:latest
Mardi 2 juillet, 14h-18h : C++17 avec Sycl sur CPU
Light image 2.43 GB OK : docker://gitlab-registry.in2p3.fr/codeursintensifs/grayscott/grayscottsyclsetup/gray_scott_sycl_ubuntu_light:latest
Code server 2.89 MB OK : docker://gitlab-registry.in2p3.fr/codeursintensifs/grayscott/grayscottsyclsetup/gray_scott_sycl_ubuntu_micromamba_code_server:latest
Light image 182 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/optimisation_racine_cubique/optimisation_cbrt_alpine_light:latest
Code server 343 MB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/optimisation_racine_cubique/optimisation_cbrt_alpine_micromamba_code_server:latest
Jupyter-hub OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/optimisation_racine_cubique/optimisation_cbrt_alpine_micromamba_vscode:latest
Pas d'images pour les cours Précision numérique avec Cadna, Profilage Mémoire pour le moment
"Light" image 5.7 GB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/performance_with_stencil_gpu/performance_with_stencil_gpu_ubuntu_light:latest
Code server 5.91 GB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/performance_with_stencil_gpu/performance_with_stencil_gpu_ubuntu_micromamba_code_server:latest
"Light" image 5.68 GB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/introduction_hpcsdk/introduction_to_hpcsdk_2403_ubuntu_light:latest
Code server 5.89 GB OK : docker://gitlab-registry.in2p3.fr/cta-lapp/cours/introduction_hpcsdk/introduction_to_hpcsdk_2403_ubuntu_micromamba_code_server:latest
"Light" image 5.07 GB OK : docker://gitlab-registry.in2p3.fr/codeursintensifs/grayscott/grayscottsyclsetup/gray_scott_sycl_ubuntu_cuda_light
Code server 5.29 GB OK : docker://gitlab-registry.in2p3.fr/codeursintensifs/grayscott/grayscottsyclsetup/gray_scott_sycl_ubuntu_cuda_micromama_code_server